Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
International journal of molecular sciences ; 24(8), 2023.
Article in English | EuropePMC | ID: covidwho-2295334

ABSTRACT

Nucleocapsid protein (N protein) is an appropriate target for early determination of viral antigen-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have found that β-cyclodextrin polymer (β-CDP) has shown a significant fluorescence enhancement effect for fluorophore pyrene via host–guest interaction. Herein, we developed a sensitive and selective N protein-sensing method that combined the host–guest interaction fluorescence enhancement strategy with high recognition of aptamer. The DNA aptamer of N protein modified with pyrene at its 3′ terminal was designed as the sensing probe. The added exonuclease I (Exo I) could digest the probe, and the obtained free pyrene as a guest could easily enter into the hydrophobic cavity of host β-CDP, thus inducing outstanding luminescent enhancement. While in the presence of N protein, the probe could combine with it to form a complex owing to the high affinity between the aptamer and the target, which prevented the digestion of Exo I. The steric hindrance of the complex prevented pyrene from entering the cavity of β-CDP, resulting in a tiny fluorescence change. N protein has been selectively analyzed with a low detection limit (11.27 nM) through the detection of the fluorescence intensity. Moreover, the sensing of spiked N protein from human serum and throat swabs samples of three volunteers has been achieved. These results indicated that our proposed method has broad application prospects for early diagnosis of coronavirus disease 2019.

2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2295333

ABSTRACT

Nucleocapsid protein (N protein) is an appropriate target for early determination of viral antigen-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have found that ß-cyclodextrin polymer (ß-CDP) has shown a significant fluorescence enhancement effect for fluorophore pyrene via host-guest interaction. Herein, we developed a sensitive and selective N protein-sensing method that combined the host-guest interaction fluorescence enhancement strategy with high recognition of aptamer. The DNA aptamer of N protein modified with pyrene at its 3' terminal was designed as the sensing probe. The added exonuclease I (Exo I) could digest the probe, and the obtained free pyrene as a guest could easily enter into the hydrophobic cavity of host ß-CDP, thus inducing outstanding luminescent enhancement. While in the presence of N protein, the probe could combine with it to form a complex owing to the high affinity between the aptamer and the target, which prevented the digestion of Exo I. The steric hindrance of the complex prevented pyrene from entering the cavity of ß-CDP, resulting in a tiny fluorescence change. N protein has been selectively analyzed with a low detection limit (11.27 nM) through the detection of the fluorescence intensity. Moreover, the sensing of spiked N protein from human serum and throat swabs samples of three volunteers has been achieved. These results indicated that our proposed method has broad application prospects for early diagnosis of coronavirus disease 2019.


Subject(s)
COVID-19 , Polymers , Humans , Polymers/chemistry , SARS-CoV-2 , Fluorescence , COVID-19/diagnosis , Pyrenes/chemistry
4.
Front Public Health ; 10: 923318, 2022.
Article in English | MEDLINE | ID: covidwho-2199448

ABSTRACT

Objective: Over the past decade, scarlet fever has caused a relatively high economic burden in various regions of China. Non-pharmaceutical interventions (NPIs) are necessary because of the absence of vaccines and specific drugs. This study aimed to characterize the demographics of patients with scarlet fever, describe its spatiotemporal distribution, and explore the impact of NPIs on the disease in the era of coronavirus disease 2019 (COVID-19) in China. Methods: Using monthly scarlet fever data from January 2011 to December 2019, seasonal autoregressive integrated moving average (SARIMA), advanced innovation state-space modeling framework that combines Box-Cox transformations, Fourier series with time-varying coefficients, and autoregressive moving average error correction method (TBATS) models were developed to select the best model for comparing between the expected and actual incidence of scarlet fever in 2020. Interrupted time series analysis (ITSA) was used to explore whether NPIs have an effect on scarlet fever incidence, while the intervention effects of specific NPIs were explored using correlation analysis and ridge regression methods. Results: From 2011 to 2017, the total number of scarlet fever cases was 400,691, with children aged 0-9 years being the main group affected. There were two annual incidence peaks (May to June and November to December). According to the best prediction model TBATS (0.002, {0, 0}, 0.801, {<12, 5>}), the number of scarlet fever cases was 72,148 and dual seasonality was no longer prominent. ITSA showed a significant effect of NPIs of a reduction in the number of scarlet fever episodes (ß2 = -61526, P < 0.005), and the effect of canceling public events (c3) was the most significant (P = 0.0447). Conclusions: The incidence of scarlet fever during COVID-19 was lower than expected, and the total incidence decreased by 80.74% in 2020. The results of this study indicate that strict NPIs may be of potential benefit in preventing scarlet fever occurrence, especially that related to public event cancellation. However, it is still important that vaccines and drugs are available in the future.


Subject(s)
COVID-19 , Scarlet Fever , Child , Humans , Scarlet Fever/epidemiology , Incidence , Time Factors , Pandemics , COVID-19/epidemiology , China/epidemiology
6.
Front Immunol ; 13: 814806, 2022.
Article in English | MEDLINE | ID: covidwho-1809386

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread and poses a major threat to public health worldwide. The whole genome sequencing plays a crucial role in virus surveillance and evolutionary analysis. In this study, five genome sequences of SARS-CoV-2 were obtained from nasopharyngeal swab samples from Zhengzhou, China. Following RNA extraction and cDNA synthesis, multiplex PCR was performed with two primer pools to produce the overlapped amplicons of ~1,200 bp. The viral genomes were obtained with 96% coverage using nanopore sequencing. Forty-five missense nucleotide mutations were identified; out of these, 5 mutations located at Nsp2, Nsp3, Nsp14, and ORF10 genes occurred with a <0.1% frequency in the global dataset. On the basis of mutation profiles, five genomes were clustered into two sublineages (B.1.617.2 and AY.31) or subclades (21A and 21I). The phylogenetic analysis of viral genomes from several regions of China and Myanmar revealed that five patients had different viral transmission chains. Taken together, we established a nanopore sequencing platform for genetic surveillance of SARS-CoV-2 and identified the variants circulating in Zhengzhou during August 2021. Our study provided crucial support for government policymaking and prevention and control of COVID-19.


Subject(s)
COVID-19 , Nanopore Sequencing , COVID-19/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
7.
Int J Radiat Biol ; 98(10): 1532-1541, 2022.
Article in English | MEDLINE | ID: covidwho-1751954

ABSTRACT

Purpose: Low-dose radiation therapy (LDRT) is an evidence-based anti-inflammatory treatment. In anti-COVID-19, our study suggests that low to moderate dose radiation of < 1.5 Gy can inhibit the induction of inflammatory cytokine and attenuate the ACE2 depression induced by spike protein in human bronchial epithelial cells in COVID-19 infection. Our study provided further mechanistic evidence to support LDRT as a cost-effective treatment for COVID-19 to relieve the severe inflammatory reaction and lung injury. Methods and materials: A cellular model was created by treating human bronchial epithelial cells (BEP2D) with SARS-CoV-2 spike protein. We used the qRT-PCR and ELISA analysis to identify the production of inflammatory cytokines. The BEP2D control cells and the spike-treated cells were irradiated using a single low to moderate dose radiation of 0.5 Gy, 1 Gy, and 1.5 Gy. The inflammatory cytokines and ACE2 expression were detected at different time points. Results: The soluble SARS-CoV-2 spike protein stimulated the formation of inflammatory cytokines IL-6 and TNF-α while reducing the ACE2 protein expression in human bronchial epithelial cells. A single low to moderate dose exposure of 0.5 Gy, 1 Gy, and 1.5 Gy could attenuate the IL-6 and TNF-α induction and rescue the depression of ACE2 by spike protein. Moreover, the spike protein increased the proteolytic degradation of ACE2 protein by promoting NEDD4-mediated ubiquitination of ACE2. Conclusions: The low-dose radiation can attenuate ACE2 depression and inflammatory response produced in the targeted human bronchial epithelial cells by spike protein. This coordinating effect of LDRT may relieve the severe inflammatory reaction and lung injury in COVID-19 patients.


Subject(s)
COVID-19 , Lung Injury , Angiotensin-Converting Enzyme 2 , COVID-19/radiotherapy , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , Lung Injury/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
J Sci Food Agric ; 102(2): 644-652, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1653304

ABSTRACT

BACKGROUND: Starch retrogradation and moisture migration of boiled wheat noodles (BWNs) result in quality deterioration and short shelf life. The objective of this research was to investigate whether konjac glucomannan (KGM) could improve the quality of BWNs and further establish the shelf-life prediction model. RESULTS: The moisture distribution, recrystallization, and thermal properties of BWNs during refrigerated or ambient temperature storage were determined. Low-field nuclear magnetic resonance data showed that KGM addition induced left-shifts of T21 and T22 values, indicating that KGM limited the mobility of bound and immobile water among noodle matrices. X-ray diffraction spectra revealed that KGM did not change the crystal patterns of BWNs but could inhibit the starch recrystallization after refrigerated storage. The Tp and ΔH values of retrograded samples notably (P < 0.05) decreased with the increase of KGM addition, suggesting the hinderance of starch retrogradation behavior by KGM. The shelf life of BWNs was predicted by accelerated storage test combined with the Arrhenius equation. The present data displayed that the predicted shelf life of vacuum-packed and sterilized BWNs with 10 g kg-1 KGM at 25 °C was 733 days, 2.4-fold that of the control group. CONCLUSION: BWNs with KGM addition could inhibit starch retrogradation and improve the storage stability, consequently promoting noodle quality. © 2021 Society of Chemical Industry.


Subject(s)
Amorphophallus/chemistry , Food Additives/chemistry , Mannans/chemistry , Plant Extracts/chemistry , Starch/chemistry , Triticum/chemistry , Cooking , Food Storage , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL